Numerical Semigroups with a Monotonic Apéry Set

ثبت نشده
چکیده

We study numerical semigroups S with the property that ifm is the multiplicity of S and w(i) is the least element of S congruent with i modulo m, then 0 < w(1) < . . . < w(m − 1). The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical semigroups from open intervals

Consider an interval I ⊆ Q . Set S(I) = {m ∈ N : ∃ n ∈ N , mn ∈ I}. This turns out to be a numerical semigroup, and has been the subject of considerable recent investigation (see Chapter 4 of [2] for an introduction). Special cases include modular numerical semigroups (see [4]) where I = [mn , m n−1 ] (m,n ∈ N ), proportionally modular numerical semigroups (see [3]) where I = [mn , m n−s ] (m,n...

متن کامل

Representation of Numerical Semigroups by Dyck Paths

We introduce square diagrams that represent numerical semigroups and we obtain an injection from the set of numerical semigroups into the set of Dyck paths.

متن کامل

On Numerical Semigroups Generated by Generalized Arithmetic Sequences

Given a numerical semigroup S, let M(S) = S \{0} and (lM(S)− lM(S)) = {x ∈ N0 : x + lM(S) ⊆ lM(S)}. Define associated numerical semigroups B(S) := (M(S)−M(S)) and L(S) := ∪l=1(lM(S)− lM(S)). Set B0(S) = S, and for i ≥ 1, define Bi(S) := B(Bi−1(S)). Similarly, set L0(S) = S, and for i ≥ 1, define Li(S) := L(Li−1(S)). These constructions define two finite ascending chains of numerical semigroups ...

متن کامل

Frobenius numbers of generalized Fibonacci semigroups

The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...

متن کامل

Fuzzy Acts over Fuzzy Semigroups and Sheaves

lthough fuzzy set theory and  sheaf theory have been developed and studied independently,  Ulrich Hohle shows that a large part of fuzzy set  theory  is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both  categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005